skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chotalia, Kiran"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Determining the fate of subducted oceanic crust is critical for understanding material cycling through Earth’s deep interior and sources of mantle heterogeneity. A key control on the distribution of subducted slabs over long timescales is the bridgmanite to post-perovskite phase transition in the lowermost mantle, thought to cause rheological weakening. Using high-resolution computational models, we show that the ubiquitous presence of weak post-perovskite at the core-mantle boundary can facilitate or prevent the accumulation of basaltic oceanic crust, depending on the amount of weakening and the crustal thickness. Moderately weak post-perovskite ( ~ 10–100× weaker) facilitates segregation of crust from subducted slabs, increasing basalt accumulation in dense piles. Conversely, very weak post-perovskite (more than 100× weaker) promotes vigorous plumes that entrain more crustal material, decreasing basalt accumulation. Our results reconcile the contradicting conclusions of previous studies and provide insights into the accumulation of subducted crust in the lowermost mantle throughout Earth’s history. 
    more » « less